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HPC HAS ALWAYS BEEN A NICHE MARKET =

* Dedicated HPC Systems

* Not sustainable in the long run

e Clusters

* Riding the wave of mass consumer CPUs

+ GPU Systems

* Riding the wave of gaming industry

interface drives  (on processor 12 memory DIMMs 12 memory DIMMs
board cold plate)
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© Topics .vwa 3 ZuGner._ ' Puts Its Al Future in the Hands of
600,000 GPUs
© Sectors By Agam Shah
© Exascale T —
© Specials January 25, 2024
@ | Rasciroe Libtany In under two minutes, Meta’s CEO, Mark Zuckerberg, laid out the company’s
Al plans, which included a plan to build an artificial intelligence system with
© Podcast the equivalent of 600,000 Nvidia GPUs.
© 'Events “I'm bringing Meta’s Al research efforts closer together to support our long-
© Job Bank term goals of building general intelligence, open sourcing it responsibly, and
making it available and useful to everyone in all of our daily lives,” Zuckerberg
© About R 2 2
said in a video posted on Twitter.
© Subscribe

Zuckerberg's announcement was an
updated roadmap of Meta’s Al plans,
which is built around the upcoming
Llama3, which is currently being
trained. It will succeed last year’s
Llama2 model weights and
tokenizers, which were major
successes with just under 2 million
combined downloads on
Huggingface. Open-source
developers have also released
thousands of Llamaz2 forks.

3 Alex Volkwy (Thurstin0 & B

ot want 1o click over 10 the ather sites, Big Zuck

Llama3 will compete with Google’s
recently released Gemini model and
OpenAl's GPT-4 and upcoming GPT-
5 models. OpenAl CEO Sam Altman
has not talked about GPT-5 yet but
has hinted that it would be much
easier to handle text, speech, and
images by supporting more data
sources.

Mark Zuckerberg announces Llama
3 and 360K GPUs on twitter

(https://twitter.com/altryne/status/1748057

“We are building an absolutely

massive amount of infrastructure to support this by the end of this year. We
will have around 350,000 Nvidia H100 or around 600,000 H100 equivalents of
compute if you include other GPUs,” Zuckerberg said.
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Microsoft, OpenAl Planning USD100B Al
Supercomputer

Frontier — 40k GPUs
Jupiter — 24k GPUs

By Paul Mah April 03, 2024

TECH & INNOVATION

Google will spend more than $100
billion on Al, exec says

Just last month, Google DeepMind CEO Demis Hassabis said the billio
into Al is reminiscent of the cryptocurrency hype
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By Britney Nguyen Updated April 16, 2024

Microsoft and OpenAl are planning to b
chips to power the next generation of A

According to a report by The Informatio
launch as soon as 2028.

Plans have already been drawn up for tt
involvement is contingent on OpenAl fu



ARTIFICIAL INTELLIGENCE, MACHINE LEARNING & HPC
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Al Mixed Precision Tensor Core
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HPC FP64 Tensor Core

Widening gap between Al and HPC (Nvidia GPUs) ? B0 ——HPC FP64 Vector

3,000

« Al vs. traditional floating point (FP64)
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+ focus on lower precision and Al-specific instructions

* e.g. tensor cores, bfloat16, ... 1000
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=> how to leverage in simulation codes?

https://www.nextplatform.com/2022/10/06/the-art-of-system-design-as-hpc-and-ai-applications-diverge
Recall:

»first wave“ of GPUs: adopt graphics for HPC simulations

»second wave...“: adopt Al for HPC simulations?
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THE (HPC) HARDWARE SITUATION TODAY

« Stagnating CPU performance
« Stagnating/degrading GPU performance (for FP64)

+ Small market with only a few players (HPE, Lenovo, Eviden)

* Adopt and/or

* Build own systems?
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ADOPT - MIXED PRECISION

Fusion plasma simulation with
GENE

./newprob run: Total energy profile

Energy
2500 ference
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./newprob run: Total energy; mixed precision moments
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TOKAMAK THEORY DIVISION | CARL-MARTIN PFEILER | 24.07.2024 . GARCHING, DAREX

500 — dOUDIE = reference

MAX PLANCK COMPUTING AND DATA FACILITY



MIXED PRECISION CONT.

Not all terms are sensitive to the reduced precision

Precision[bits] vs. error{log] -- species #1 --- Error in < Qs x >
T
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GARCHING, DAREXA-F PROJECT MEETING
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GENE SCALING - THE CURSE OF MESSAGE PASSING
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ADOPT - USE Al METHODS

Surrogate
Models
P;r::::rtler Optimization
Augmented
Simulations

Controlling
complex systems
and simulations of
digital twins

s Manufacturing
urge ‘
g ry‘ Reactors\

Simulation Mobility
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PREDICION OF 3D PROTEIN STRUCTURES
ENABLING Al SYSTEMS IN COMPUTATIONAL BIOLOGY FOR A BROAD USER BASE

AlphaFold2 [1]

+ Deep learning system to predict the 3d structure of proteins based on their linear sequence of amino acids
» Adapted and optimized by MPCDF early on for use on supercomputers with GPU acceleration

* High demand and extreme 10 requirements, mitigated by using dedicated NVMe-based storage systems

* Very large and broad user base, encompassing theoretical, interdisciplinary, and experimental groups

>T1037 S0A2C3d4, , 404 residues]

SKINFYTTTIETLETEDQNNTLTTFKVQNVSNAST IFSNGK
TYWNFARPSY ISNRINTFKNNPGVLRQLLNTSYGQSSLWAK
HLLGEEKNVTGDFVLAGNARESASENRLKSLELSIFNSLQE

o® KDKGAEGNDNGS 1S 1VDQLADKLNKVLRGGTKNGTSIYSTV
\0\

TPGDKSTLHE IKIDHF IPET 1 SSFSNGTMIFNDK IVNAFTD
HFVSEVNRMKEAYQEL ETLPESKRVVHYHTDARGNVMKDGK Ti087 / 64 T1049 / 6yt
LAGNAFKSGHI LSELSFDQ I TQDDNEMLKLYNEDGSP INPK SO L o
GAVSNEQK I L IKQT INKVLNQRIKENIRYFKDQGLV IDTVN

KDGNKGFHFHGLDKS IMSEYTDDIQLTEFD I SHVWSDFTLN T 2

SILASIEYTKLFTGDPANYKNMVDFFKRVPATYTN @ Computational prediction

[1] Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature 596.7873 (2021): 583-589.
[2] https://qithub.com/deepmind/alphafold
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https://github.com/deepmind/alphafold

RECOGNITION OF CRYSTAL STRUCTURES
A COLLABORATION OF MPI FUR EISENFORSCHUNG AND MPCDF

Automatic analyses of atom probe tomography data .o pace st

o structure

gy Im
{ Mo

A convolutional neuronal network has been

developed which can reconstruct 3D crystal structures
from atom probe tomography data

el %
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The method dramatically speeds up the analysis of ! [ ‘ ------- Er{%ﬁ%%“rﬁl e
mICf'Og raphS “ i r’ Convolution (C) Pooling (P) c P J ,l .I: Pl Fulconnect

The method has been extended to reliably detect

chemical short-range order (CSRO) in crystalline
structures

Y. Li, T. Colnaghi. A. Marek et al. Npj Comput. Mater. 7, 8 (2021)
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SISSO++
A COLLABORATION OF THE FRITZ-HABER INSTITUTE, MPCDF, EU COE NOMAD

{\‘b\ P GO . s i
e oe i /" 7\
7\ /\ 7\ /N

\Q(\ SISSO, a deterministic symbolic regression method R iR

SISSO
« extracts mathematical expressions directly from data in 2 steps: e e —
1. create a (huge) pool of analytical expressions through iterative ;f;(;:',::"::;j":;mm,g, + 10 regularzation
ComblnatlonS Y=a0+21%x1+22°x2+... (Forx1, x2, ... in generated fea

nMDlA . Lol OpenMP

2. select optimal candidates for desired properties through (regression)

Programeming models:

analysis of these expressions and their linear combinations —v oo oomis -y
+ SISSO++, open source software (Purcell et al., JOSS, 7(71), 3960, 2022) :

cross-platform, GPU-acceleration using the Kokkos framework o ad

n nodes

. i . . . . - Y. Yao,S. Eibl,M. R L. Ghiringhelli
+ scientific application highlight: identification of > 50 strongly thermally N y Purcaecl)l M. ISchefﬂe?r(Tr?%repar;ggg)el

insulating materials for thermoelectric elements (devices able to conve
otherwise wasted heat into useful electrical voltage)

Purcell et al. npj Comput Mater 9, 112 (2023) L



GANS FOR CHEMICAL STRUCTURE GENERATION ..&9
A COLLABORATION OF MPI FHI AND MPCDF

Generate relevant chemical structures

Obtaining chemical structures for interesting
configuations is hard, since the most stable (measured)
ones are “boring”

Design and train a physics informed generative
model which can create physically correct but very

interesting structures

The generated structures will be then used for
calculations of material properties
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P. Kdnig et. al., Presentation at the SKM
2023



SYNTHSEG
A COLLABORATION OF MPI CBS AND MPCDF

Synthetic image generation for segmentation networks
» Instead of training on expensive (and hard to obtain) R e > I3,
. . . y 'Generative|
real MRI scans, a massive and diverse synthetic @] | :
. model ‘ [Back ropa atlon]
dataset is generated =" & ; :
A . . . s . > Average soft

« The synthetic images are obtainded via a generative R

model that takes as input real exisiting label maps Training Set {S,} Target Labels T)
e The generative model is tuned to produce images that Input Labels  Deformation GMM Sampling  Bias Field Dwnsampling Training inputs )

resemble the the real MRI scans

« The final segmentation model (well-proven 3d Unet) is
trained with this generated dataset

MAX PLANCK COMPUTING AND DATA FACILITY



IMAGE SEGMENTATION
A COLLABORATION OF MPI FOR MICROSTRUCTURE PHYSICS AND MPCDF

a) Deep Leaming for Segmentation
Automatic segementation of neuron cell images =
A\
. - . </ A\ i
* Analysing and segmenting microscop neuron cell i)-‘;_(‘\_\,}»s — |
images obtained from tissue samples is very time o/ (Y g
consu ml ng Training dataset IIIT.“;:.\I:bllt':::::lllllg Neuron cells
) segmentation
* Via manual labeling a data set for cell types has been }
created b) Quantification of neuron cells
* A 2d Unet neuronal network is trained on this data set
to overcome the tedious manual process of analysing
future tissue data ,” ' ' , |
Highlight and count Highlight and count Measure neurite length
o cells neurites and orientation distribution
00 oe Figure 1: Overview of the computational pipeline of NeuroQuantify, a) Deep leaming for cell
o and neurite segmentation, and b) Quantification number of cells and measurement of neurite
* e lengths and its orientation distribution.

60\ Ka My Dang et al., “NeuroQuantify — A software Package for detection and quantification of Neuron cells and Neurite length-based segmentation®, in preparation )

MAX PLANCK COMPUTING AND DATA FACILITY



IMAGE SEGMENTATION
A COLLABORATION OF MPI HUMAN COGNITIVE BRAIN SCIENCES AND MPCDF

Robust classification of neuro degeneration

« Ultimate goal: develop a deep neuronal network
which can detect from MRI scans the onset of
neuro degeneration, such as Alzheimer’s disease

Augmentat/on
(opt/onal)
* One random distortion drawn * Classification
from augmentation set * Backpropagation
* Applied with random intensity

» First goal: develop neuronal networks which can ,,,put 3D MRI
descriminate neuro degeneration at diagnosed A

scans vs. “healty“ scans

+ Challenge: obtaining enough MRI scans of early ‘0
onset neuro generation features eo 00
$ . 00
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3D MAPPING OF CLOUD COMPLEXES IN THE MILKY WAY

A COLLABORATION OF MPI ASTRONOMY AND MPCDF

Automatic density reconstruction from distance and
optical-IR extinction measurements

A new algorithm (based on baysian statistics) to infer
a 3d density distribuition from distance and extinction
measurements has been optimized by MPCDF to be
able to tackle better resolved inference grids

A catalog with 16 molecular cloud complexes of the
Milky Way a 3d density distribution could be generated

E T. E. Dharmawardena et al

., The 3D structure of Galactic molecular cloud complexes out to 2.5 kpc, MNRAS (2022)



OTHER OPTION: BUILD

Instinct MI300X Instinct MI300A
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DISRUPTIVE OPTIONS - QUANTUM?

® |||
RCCS

@ Scientific Analysis (not Hype) of Utility of Quantum Computing

MAX P

RIMZN

For practical ‘quantum supremacy’, exponential |
speedup cf classical algorithm is necessary

e Many algorithms only achieve quadratic speedup,
thus will lose to classical in practice

. E.g., Shor’s algorithm - exponential => Good
. E.g., Grover’s algorithm - quadratic=>NG

For ‘pure’ quantum algorithms, none exist that
exhibit quadratic speedup & can be executed
practically on current NISQ machines w/~100
qubits

e Shor’s algorithm may break RSA 2048 in the far

future but will require 20~200mil NISQ qubits
https://arxiv.org/pdf/1905.09749.pdf

Hybrid algorithms e.g., variational algorithms
(e.g. VQE) might be useful in much closer future

Require platform to conduct scientific analysis of
QC, as large qubits as possible, using real state-
of-the art real machines and simulators!

Torsten Hoefler, Thomas Haner, Matthias Troyer
Communications of the ACM, May 2023, Vol. 66 No. 5, Pages 82-87
10.1145/3571725

Disentangling Hype from Practicality: On Realistically Achieving
Quantum Advantage

TORSTEN HOEFLER, Microsoft Corporation, USA and ETH Zurich, Switzerland
THOMAS HANER and MATTHIAS TROYER, Microsoft Corporation, USA

Quantum computers offer a new paradigm of computing with the potential to vastly outperform any imagine:
computer. This has caused a gold rush towards new quantum algorithms and hardware. In light of the growing
and hype surrounding quantum computing we ask the question which are the promising applications to realize quantum
advantage. We argue that small data problems and quantum algorithms with super-quadratic speedups are essential to make
With these guidelines one

puters useful in prac
from those where classical soluti
do not achieve the necessary specy
chemistry. We expect further applications to be developed based on our guidelines

08t 0 atic
ered practical, we already sec a huge potential in material science and

ACM Reference Format:
Torsten Hocfler, Thomas Hiner, and Matthias Troyer. 2022. Disentangling Hype from Practicality: On Realistically Achicving
Quantum Advantage. 1, 1 (September 2022), 7 pages. https://doi.org/ XXXXXXX.XXXXXXX

Practical and impractical applications. We can now use the above considerations to discuss several classes of
applications where our fundamental bounds draw a line for quantum practicality. The most likely problems
to allow for a practical quantum advantage are those with exponential quantum speedup. This includes the
simulation of quantum systems for problems in chemistry, materials science, and quantum physics, as well as
cryptanalysis using Shor’s algorithm [13]. The solution of linear systems of equations for highly structured
problems [10] also has an exponential speedup, but the IO limitations discy
and undo this advantage if knowledge of the full solution is required (as opps
obtained by sampling the solution).

Equally importantly, we identify dead ends in the maze of applications.
quadratic quantum speedups, such as many current machine learning tra
design and protein folding with Grover’s algorithm, speeding up Monte ¢
walks, as well as more traditional scientific computing simulations includ
systems of equations, such as fluid dynamics in the turbulent regime, weat
achieve quantum advantage with current quantum algorithms in the fores|
the identified I/O limits constrain the performance of quantum computing
linear systems, and database search based on Grover's algorithm such that

These considerations help with separating hype from practicality in the
can guide algorithmic developments. Specifically, our analysis shows that
to focus on super-quadratic speedups, ideally exponential speedups and 2]
bottlenecks when deriving algorithms to exploit quantum computation be’
quantum practicality are small-data problems with exponential speedup, ani
problems in chemistry and materials science.

slide curtesy Satoshi Matsuoka




LIKELY/NEEDED QUANTUM DEVELOPMENTS

* More research into algorithms

* QC good for big compute on little data; bad on big data

* QC likely as “accelerator” for certain problems in a classical
workflow

 Most common strategy adopted worldwide today, including
EuroHPC

« Commercial viability of QC?

20



FUTURE AND TRENDS IN SCIENTIFIC HPC

« Stagnating hardware —
the importance of algorithmic developments

* The role of Al

« Specialized systems?

* Disruptive technologies?
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